Role of precipitant species on the coprecipitation for preparing Fe₃O₄ nanoparticles

JIANCHAO MA^{a,*}, LINGLING WANG^a, YANLI WU^b, XIAODONG ZHAO^d, XIANSHU DONG^a, JILONG ZHANG^a, QINGFANG ZHANG^c, CHEN QIAO^c, QINGLIANG MA^{b*}

^a College of mining Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China

^b Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education and Shanxi Province, Taiyuan 030024, Shanxi, PR China

^c College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China ^dNornico Group firmaco, Shanxi North Machine-building CO., LTD, Taiyuan 030024, Shanxi, PR China

 Fe_3O_4 was prepared by adding representative precipitants including NaOH, NH₃•H₂O, N₂H₄•H₂O, Na₂CO₃ and NH₄HCO₃ during the coprecipitation of ferrous and ferric species. The roles of the variable precipitants were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibration sample magnetometer (VSM) and N₂ absorption–desorption analyses. The results indicated that higher pH level favored the formation of a larger volume and stronger saturation magnetizations Fe₃O₄. Thereinto, the strongest saturation magnetization was 89 emu/g. It's also found that Fe₃O₄ nanoparticles were well crystallized using N₂H₄•H₂O because of its oxidation resistance and good precipitability. Furthermore, by the synergistic action of both N₂H₄•H₂O and Na₂CO₃ under mild reaction conditions, the specific surface area of the Fe₃O₄ nanoparticles estimated by the BET equation was up to137.6 m²/g.

(Received September 02, 2014; accepted November 13, 2014)

Keywords: Magnetite, Coprecipitation, High specific surface area, Strong saturation magnetization

1. Introduction

Nano Magnetite particles (Fe₃O₄) have attracted attention of researchers due to their unique magnetic properties and widespread application in different fields such as magnetic storage devices, catalysis, magnetic refrigeration systems, mineral separation, cancer therapy, magnetic cell separation, and heat transfer applications in drug delivery system [1-5]. Various methods have been reported for the synthesis of Fe3O4 nanoparticles, such as microemulsion [6], hydrolysis [7], hydrothermal/ solvothermal methods [8,9], sol-gel reactions 10, and chemical coprecipitation [11,12]. There into. coprecipitation method is increasingly popular due to its simplicity, inexpensive equipment and potential for large scale production [13]. Nevertheless, it is a great challenge to obtain nanoparticles with satisfied morphology in a controllable manner, as the crystal growth is extremely difficult to control in the complicated reaction system. It's widely acceptable that the role of the precipitant is significantly important as a key contribution to the magnetic particles' morphology, dispersion, size and specific saturation magnetization. However, there has been so far no report of the roles of precipitant species for preparing Fe₃O₄ in the coprecipitation process.

In this work, a series of typical precipitants including NaOH, $NH_3 \bullet H_2O$, $N_2H_4 \bullet H_2O$, Na_2CO_3 and NH_4HCO_3

were added during the coprecipitation of ferrous and ferric species. The effects of doping variable precipitants were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibration sample magnetometer (VSM), and N_2 absorption–desorption analyses.

2. Experimental and methods

All the chemicals were analytical reagents and obtained from Tianjin Kemiou Chemical Reagent Co., Ltd. Commercially available solvents and reagents were used as received without further purification. The Fe₃O₄ nanoparticles were prepared as follows: A 10.0 g precipitant (NaOH, NH3•H2O, N2H4•H2O, Na2CO3 and NH₄HCO₃) was dissolved in 50 mL H₂O. Therein the concentrations of hydrazine hydrate and ammonium hydroxide was 60 wt. % and 30 wt. %, respectively. An aqueous solution of 3.76 g FeCl₃·6H₂O and 1.97 g FeSO₄·7H₂O was prepared in 50 mL H₂O. Then, both the solutions were added to a beaker containing 50 mL H₂O and heated at 60 °C for 1 h. Next, the reaction mixture was heated at 100 °C for another 1 h. After cooling to room temperature, the precipitated black solid products were collected using a magnet, washed with water and ethanol several times, and dried in vacuum at 60 °C for 6 h to afford the corresponding Fe₃O₄ nanoparticles.

The Brunauer–Emmett–Teller (BET) specific surface area and pore size measurements were performed by N_2 absorption–desorption at the liquid N_2 temperature using a NOVA2200e automatic surface area and porosity analyzer. The XRD patterns of the samples were recorded using a Rigaku D/max 2500 X-ray diffractometer equipped with Cu K α radiation (40 kV and 100 mA) in the range 10–90°. The scanning electron microscopy (SEM) images were taken on a LEO1530 scanning electron microscope. The magnetic properties of the products were investigated using a VSM with an applied field between –30,000 and 30,000 Oe at room temperature.

3. Results and discussion

The XRD curves for the as-prepared black powders are illustrated in Fig. 1. For the obtained samples by NaOH, NH₃•H₂O, N₂H₄•H₂O and Na₂CO₃, the diffraction peaks of the samples can be readily assigned to Fe_3O_4 , which was in good agreement with the literature [14] and exactly matched with the standard values of Fe₃O₄ (JCPDS NO. 89-4319). Surprisingly, Fe₃O₄ phase can not be clearly observed for the material used NH4HCO3 precipitant. Additionally, Calculated from the (3 1 1) diffraction line (35.4°) on the XRD patterns, by use of Scherrer equation, the average diameters of Fe₃O₄ crystals are 55.8±17.3, 34.3±4.6, 33.3±6.4, and 7.1±0.7 nm for the doped precipitant NaOH, NH₃•H₂O, N₂H₄•H₂O and Na₂CO₃, respectively. In order to find the reasons for the phenomena above, the pH values of these precipitant solutions were detected by pH meter. The results show that the pH values are 14, 11, 11, 10 and 8, respectively. Compared with the XRD results, it's found that the pH values dramaticlly affected crystal growth of Fe₃O₄. Experimental results revealed that Fe₃O₄ phase could be easily obtained if the pH value for the reaction solution was more than 8. Interestingly, Fe₃O₄ particles formed better crystallized by the introduction of N₂H₄•H₂O. By observing experiment, the color of reaction liquid by the added N2H4•H2O was black and had no obvious change on the whole process, while the brown solution was transitorily appeared using other precipitants. Considering reaction system, the brown solution might contain Fe^{3+} . Regrettably, the material can not be detected by XRD, it seemed reasonable that Fe3+ materials could not be collected by a magnet because of their nonmagnetic properties. Additionally, N2H4•H2O could readily remove the oxygen of solutions by releasing hydrogen and nitrogen at 60 °C. Simultaneously, as a strong reducing agent, N₂H₄•H₂O could slow down the speed of oxidation so that the deoxidization behavior of reaction system could take place and avoided the oxygenization of from Fe²⁺ to Fe³⁺. It implied that N₂H₄•H₂O had the characteristics of both oxidation inhibitor and good precipitant. It was also found that the Fe₃O₄ particle size was increased with the

increase of the pH value of the precipitant solution. It implied that a higher pH level resulted in a larger volume of Fe_3O_4 .

Fig. 1. XRD pattern of Fe_3O_4 .

The specific surface areas and pore structural parameters of these Fe₃O₄ materials are summarized in Table 1. Compared with the results in Fig. 1, it was found that the Fe₃O₄ particle size was decreased with the increase of the specific surface areas of the samples, which implied that the lower pH value of a precipitant would favor for the formation of the higher specific-surface-area material. Noteworthily, total pore volume of Fe₃O₄ is significantly larger for decomposable precipitant of heating such as N₂H₄•H₂O, Na₂CO₃ than for indecomposable ones of heating like NaOH and NH₃•H₂O. One possible reason was that decomposable precipitant could come into being large amounts of bubbles, being responsible for the formation of porous structure. Consequently, N₂H₄•H₂O and Na₂CO₃ as the precipitant, were dropwise added together into the reaction system, Fe₃O₄ with a higher surface area (137.6 m²/g) was obtained, as shown in Table 1. The corresponding N₂ adsorption-desorption isotherm and pore-size distribution curve of the Fe₃O₄ are shown in Fig. 2. The isotherm was classified as type IV with an apparent hysteresis loop in the range 0.3-1.0 P/P°, indicating the presence of mesopores. Furthermore, two main peaks were centered at ~6.5 nm and 12.4 nm. Most of the pores ranged from 3 nm to 30 nm, as shown in the inset of Fig. 2. Posteriorly the pore volume of Fe₃O₄ by the mixture of N₂H₄•H₂O and Na₂CO₃ was nearly equal to the result singly using one of them. In contrast, the average pore diameter became significantly small. These were possible reason why Na₂CO₃ doping N₂H₄•H₂O brought down the pH, promoting the formation of the small pore diameter. Moreover, synergistic action of N₂H₄•H₂O and Na₂CO₃ could cause bimodal pore size. These adequately demonstrated that the type of the precipitant would remarkably influenced pore structural of Fe₃O₄.

Table 1. The BET results for the prepared Fe_3O_4 from various precipitants.

Precipitant	$S_{BET}^{a}(m^{2}/g)$	$V_{p}^{b}(cm^{3}/g)$	D _p ^c (nm)
NaOH	14.9	0.05	14.3
NH ₃ •H ₂ O	53.6	0.09	11.4
$N_2H_4\bullet H_2O$	72.6	0.27	14.9
Na ₂ CO ₃	104.1	0.25	9.65
Na ₂ CO ₃ +	127 (0.25	7.01
$N_2H_4\bullet H_2O$	137.0	0.25	7.21
2 51	1.01 0		

 a S_{BET}, The specific surface area.

^b V_P, Total pore volume.

^c D_P, Average pore diameter.

Fig. 3 illustrates the SEM micrographs for the produced Fe_3O_4 particles, which have irregular particles shape for all Fe₃O₄ materials. Fig. 3a shows Fe₃O₄ obtained by NaOH, being comprised of some larger block and disintegrating slag particles. While the Fe₃O₄ sizes using Na₂CO₃ are fairly small and more incompact like loose soil, as shown in Fig. 3b. Fig. 3c shows that particles are amorphous or subidiomorphic crystal, and have agglomeration to some extent in appearance by NaCO₃ and N₂H₄•H₂O, with the particle diameter of more than 30 nm. As clearly indicated in Fig. 3d by further study, the entire crystal is packed with many fine Fe₃O₄ nanoparticles, indicating that a single nanocrystal had a multicrystal structure. Thus, it's believable that the assembly of small Fe₃O₄ nanoparticles resulted in the formation of its high specific surface area and extensively porous structure, and confirmed BET determinations. The front result can be used to synthesize the Fe₃O₄ with the unique and fine size.

Fig. 2. Nitrogen adsorption-desorption isotherm and the pore size distribution curve (inset) for Fe_3O_4 obtained by the synergistic action of N_2H_4 • H_2O and Na_2CO_3 .

Fig. 3. SEM images of Fe_3O_4 (a) Fe_3O_4 obtained by NaOH, (b) Fe_3O_4 obtained by Na_2CO_3 , (c) and (d) obtained by Fe_3O_4 obtained by the synergistic action of $N_2H_4 \cdot H_2O$ and Na_2CO_3 .

The magnetic properties of the Fe_3O_4 nanoparticles have been measured with the help of the VSM. Fig. 4 shows the corresponding magnetization as a function of magnetic field, or the M versus H curve. Obviously, the magnetic hysteresis loops for all Fe₃O₄ materials are S-like curve, which show no remnant magnetization or coercivity, indicating that the samples exhibited a superparamagnetic behavior at room temperature. Generally, magnetite particles with sizes below 30 nm can have superparamagnetic properties [15]. The average sizes of Fe₃O₄ materials were more than 30 nm, but they still exhibited superparamagnetic behavior. Nevertheless, apart from the particle size and crystallinity, there were many factors such as surface spin-canting, surface disorder, surface ligands, cation site distribution, and stoichiometry deviation that affected the magnetic properties of nanoparticles, even when synthesized by the same approach [16]. Thus it could be understood that the Fe_3O_4 nanoparticles obtained by different precipitant possessed superparamagnetic properties. Additionally, the saturation magnetizations (Ms) of the magnetite nanocrystalline using NaOH, N₂H₄•H₂O, Na₂CO₃ and the mixture of N₂H₄•H₂O and Na₂CO₃ is about 89, 52, 30, 54 emu/g, respectively. Compared with the SEM and XRD results, it could be found that the magnetic force acting on a particle is in a certain proportional to the particle volume. In the other hand, a larger volumetric Fe₃O₄ generally possessed a better magnetic response. If the particles were too small, their magnetic tractive forces in a field gradient will not be large enough to overcome Brownian motion, and no separation will occur. For Fe₃O₄ extrapolations from the behavior of the bulk material suggested that the critical size for separation was more than 30 nm for the case of an isolated (nonaggregated) particle.

Fig. 4. Hysteresis curve of Fe₃O₄.

4. Conclusions

Representative precipitants including NaOH, NH₃•H₂O, N₂H₄•H₂O, Na₂CO₃ and NH₄HCO₃ were used in the coprecipitation of Fe^{3+} and Fe^{2+} agents, the roles of doping precipitants were systematically studied. Experimental result indicated that higher pH levels resulted in a larger volume of Fe₃O₄ particles, which could be responsible for the size and the saturation magnetization of Fe₃O₄. It's also convinced that the precipitation types would affected morphological features of Fe₃O₄. The Fe₃O₄ nanoparticles were well crystallized using N₂H₄•H₂O on account of its characteristics of oxidation inhibitor and good precipitant. Furthermore, the specific surface area of the Fe₃O₄ nanoparticles estimated by the BET equation was 137.6 m^2/g , with the introduction of N₂H₄•H₂O and Na₂CO₃. It could be also found that a larger volumtric Fe₃O₄ generally possessed a stronger magnetic response. These features are beneficial for their application in some special field such as adsorbents, recoverable catalysts, drug targets, and so on.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51204119) and the Natural Science Foundation of Shanxi Province (No. 2014021015-4).

References

- P. Panneerselvam, N. Morad, K.A. Tan, J. Hazard. Mater. 186, 160 (2011).
- [2] R.-Y. Hong, J.-H. Li, S.-Z. Zhang, H.-Z. Li, Y. Zheng, J.-m. Ding, D.-G. Wei, Appl. Surf. Sci. 255, 3485 (2009).
- [3] M. Gao, W. J. Condens. Matt. Phys. 1, 49 (2011).
- [4] L. Wang, J. Li, Q. Jiang, L. Zhao, Dalton. Trans. 41, 4544 (2012).
- [5] A. Wu, P. Ou and L. Zeng, Nano 5, 245 (2010).
- [6] QI.Huang, D. Zhang, H. zhang, S. wang, Z.Sun, J.
 Wang and F.Liu, J. Optoelectron. Adv. Mat. 6(7), 456 (2012), L. Han and Y. Wei, Mater. Lett. 70, 1 (2012).
- [8] R. Fana, X.H. Chen, Z. Gui, L.Liu, Z.Y. Chen, Mater. Res. Bull. 36, 497 (2001).
- [9] Z. Cheng, X. Chu, H. Zhong, J. Yin, Y. Zhang and J. Xu, Mater. Lett. 76, 90 (2012).
- [10] L.H. Shen, J.F. Bao, D. Wang, Y.X. Wang, Z.W. Chen, L. Ren, X. Zhou, X. B. Ke, M. Chen, A.Q. Yang, Nanoscale 5, 2133 (2013).
- [11] R.G. RuizMoreno, A.I. Martínez, C. Falcony, R. Castro-Rodriguez, P. Bartolo-Pérez, M. Castro-Román, Mater. Lett. 92, 181 (2013).
- [12] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Procedia Eng. 27, 632 (2012).
- [13] H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Appl. Surf. Sci. 280, 679 (2013).
- [14] F. Chen, S. Xie, J. Zhang, R. Liu, Mater. Lett.112, 177 (2013).
- [15] Y. Hwang, S. Angappane, J. Park, K. An, T. Hyeon, J.-G. Park, Curr. Appl. Phys. **12**, 808 (2012).
- [16] J. Salado, M. Insausti, I. Gil de Muro, L. Lezama, T. Rojo, J. Non-Cryst. Solids **354**, 5207 (2008).

^{*}Corresponding author: majianchao@tyut.edu.cn maqingliang@tyut.edu.cn